LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Insights into unexpected photoisomerization from photooxidation of tribromoacetic acid in aqueous environment using ultrafast spectroscopy.

Photo by a2eorigins from unsplash

Haloacetic acids are carcinogenic disinfection by-products (DPBs) and their photo-decomposition pathways, especially for those containing bromine and iodine, are not fully understood. In this study, femtosecond transient absorption (fs-TA) spectroscopy… Click to show full abstract

Haloacetic acids are carcinogenic disinfection by-products (DPBs) and their photo-decomposition pathways, especially for those containing bromine and iodine, are not fully understood. In this study, femtosecond transient absorption (fs-TA) spectroscopy experiments were introduced for the first time to investigate the photochemistry of tribromoacetic acid. The fs-TA experiments showed that a photoisomerization intermediate species HOOCCBr2-Br (iso-TBAA) was formed within several picoseconds after the excitation of TBAA. The absorption wavelength of the iso-TBAA was supported by time-dependent density calculations. With the Second-order Møller-Plesset perturbation theory, the structures and thermodynamics of the OH-insertion reactions of iso-TBAA were elucidated when water molecules were involved in the reaction complex. The calculations also revealed that the isomer species were able to react with water with its reaction dynamics dramatically catalyzed by the hydrogen bonding network. The proposed water catalyzed OH-insertion/HBr elimination mechanism predicted three major photoproducts, namely, HBr, CO and CO2, which was consistent with the photolysis experiments with firstly reported CO formation rate and mass conversion yield as 0.096 min-1 and 0.75 ± 0.1 respectively. The spectroscopic technique, numerical tool and disclosed mechanisms provided insights on photodecomposition and subsequent reactions of polyhalo-DPBs contain heavy atom(s) (e.g., Br, I) with water, aliphatic alcohols or other nucleophiles.

Keywords: insights unexpected; iso tbaa; water; photoisomerization; spectroscopy; tribromoacetic acid

Journal Title: Journal of hazardous materials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.