LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Oxygen vacancies-enriched CoFe2O4 for peroxymonosulfate activation: The reactivity between radical-nonradical coupling way and bisphenol A.

Photo by jontyson from unsplash

Oxygen vacancies (OV) play a vital role in catalytic activity. Herein, a series of MOF-derived CoFe2O4 nanomaterials with OV tuned by a simple thermal aging strategy are prepared for peroxymonosulfate… Click to show full abstract

Oxygen vacancies (OV) play a vital role in catalytic activity. Herein, a series of MOF-derived CoFe2O4 nanomaterials with OV tuned by a simple thermal aging strategy are prepared for peroxymonosulfate (PMS) activation. Remarkably, the stability, structural and catalytic properties show dependence on the annealing temperature. The abundant surface OV and functional groups on CoFe2O4 were verified as active sites to boost catalytic activity. Based on the density functional theory (DFT) calculations, (1 1 1), (2 2 2) and (4 2 2) planes exposed at higher temperatures facilitate catalytic performance, ascribed to the intense surface adsorption energy. The quenching and electron paramagnetic resonance (EPR) experiments indicate catalysis degradation is a radical-nonradical coupling process. The reactivity between reactive oxygen species (ROS) and bisphenol A and the radical-nonradical dual degradation pathways are systematically explored by combined DFT and HPLC-MS.

Keywords: activation; oxygen vacancies; nonradical coupling; radical nonradical; oxygen; peroxymonosulfate

Journal Title: Journal of hazardous materials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.