LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Electrochemically-driven regeneration of iron (II) enhances Fenton abatement of pesticide cartap.

Cartap is a carbamate insecticide intended to protect crops such as rice, tea, and sugarcane. Cartap in the environment presents a serious threat to non-target organisms through direct exposure or… Click to show full abstract

Cartap is a carbamate insecticide intended to protect crops such as rice, tea, and sugarcane. Cartap in the environment presents a serious threat to non-target organisms through direct exposure or via biomagnification. Electro-assisted Fenton technology taps the potential of Fenton reagents to degrade cartap. Electrochemical reduction of iron accelerates catalyst regeneration. Cartap degradation was first investigated by varying reaction pH, as well as the initial H2O2 and Fe2+ dosage, followed by optimization studies using central composite design. Parametric results indicate the highest cartap removal of 98.10% was achieved at 1.6 pH, 3.0 mM Fe2+, and 40 mM H2O2 at I = 1.0 A and t = 30 min. These results notoriously surpass conventional Fenton that only achieved 53.8% cartap removal under similar conditions. The hybridization of Fenton process through electrochemical regeneration enhances removal and increases degradation kinetic up to a pseudo-first-order rate constant value of 21.30 × 10-4 s-1. Effects of coexisting inorganic salts PO43-, NO3-, and Cl- at 1 mM and 10 mM concentrations were investigated. These results demonstrate that Fenton electrification as process intensification alternative can enhance the performance and competitiveness of conventional Fenton by ensuring higher availability of iron catalyst while minimizing sludge production.

Keywords: electrochemically driven; cartap; driven regeneration; iron; fenton

Journal Title: Journal of hazardous materials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.