LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Heavy metal ions and particulate pollutants can be effectively removed by a gravity-driven ceramic foam filter optimized by carbon nanotube implantation.

Photo from wikipedia

It is of great significance to develop a new gravity-driven filter to remove water pollutants, but it is still challenging. Here, a novel and simple strategy is demonstrated to manufacture… Click to show full abstract

It is of great significance to develop a new gravity-driven filter to remove water pollutants, but it is still challenging. Here, a novel and simple strategy is demonstrated to manufacture fly ash (FA) ceramic foams showing a three-dimensional interconnected porous structure, with multiwalled carbon nanotubes (MWCNTs) implanted by combining carbamate grafting and polydimethylsiloxane coating. The polydimethylsiloxane formed a physical coating on the carbamate group, generating an effective thermal insulating layer on the outer side of the entire MWCNT. The FA foam, which shows a sufficient adsorption capacity for Pb(II) (51.67 ± 1.17 mg g-1) and Cd(II) (30.12 ± 0.37 mg g-1) at pH = 5, T = 25 °C, has a 96.33%, 95.12%, 89.50% removal efficiency for Cd(II), Pb(II), and particulate pollutants, and exhibits excellent recycling performance. This paper provides new opportunities to fabricate gravity-driven filters with low energy consumption for wastewater treatment.

Keywords: carbon; particulate pollutants; foam; heavy metal; gravity; gravity driven

Journal Title: Journal of hazardous materials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.