LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Introduction of cation vacancies and iron doping into TiO2 enabling efficient uranium photoreduction.

Photo from archive.org

The reduction of U(VI) to U(IV) in wastewater by semiconductor photocatalysis has become a new highly efficient and low-cost method for U(VI) removal. However, due to the weak absorption of… Click to show full abstract

The reduction of U(VI) to U(IV) in wastewater by semiconductor photocatalysis has become a new highly efficient and low-cost method for U(VI) removal. However, due to the weak absorption of visible light led by wide band gap and low carrier utilization rate resulted from the severe electron-holes recombination, the photoreduction performance of U(VI) is limited. Herein, the Ti vacancies and doped Fe atoms were simultaneously introduced into TiO2 nanosheet (labeled as 4%Fe-Ti1-xO2) as a highly active and stable catalysis for U(VI) photoreduction. Without adding any hole sacrifice agent, 4%Fe-Ti1-xO2 nanosheets achieved 99.7% removal efficiency for U(VI) within 120 min. And the 92.1% removal efficiency of U(VI) via 4%Fe-Ti1-xO2 nanosheets was still maintained after 5 cycles. Moreover, 4%Fe-Ti1-xO2 exhibited dramatic removal rate, 81.6% U(VI) in the solution was removed in 10 min. Further study on the mechanism showed that simultaneously introducing the Ti vacancies and doped Fe atoms in 4%Fe-Ti1-xO2 nanosheets improved the visible light utilization and decreased the recombination of photogenerated electron-hole pairs, contributing to the highly efficiency removal of U(VI).

Keywords: introduction cation; ti1 xo2; photoreduction; xo2 nanosheets; cation vacancies

Journal Title: Journal of hazardous materials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.