LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Integrated watershed process model for evaluating mercury sources, transport, and future remediation scenarios in an industrially contaminated site.

Photo from wikipedia

We used the Soil Water Assessment Tool (SWAT) as a framework to develop an empirical Hg flux model for Upper East Fork Poplar Creek (UEFPC), a Hg-contaminated watershed in Oak… Click to show full abstract

We used the Soil Water Assessment Tool (SWAT) as a framework to develop an empirical Hg flux model for Upper East Fork Poplar Creek (UEFPC), a Hg-contaminated watershed in Oak Ridge, Tennessee. By integrating long-term Hg monitoring data with simulated flow and suspended solid loads in a site-specific empirical Hg transport model, we (1) quantified the spatial, temporal, and flow regime controls on daily Hg flux (adjusted R2 = 0.82) and (2) made predictions about Hg flux under future climate, land use, and management scenarios. We found that 62.79% of the average daily Hg flux in the watershed is currently driven by base flow, whereas variability in Hg flux is driven by storm and extreme flow. We estimate an average annual Hg flux of 28.82 g day-1 leaving the watershed under baseline precipitation, with an estimated 43.73% reduction in daily Hg flux under drought conditions and a 296% increase in daily Hg flux in extreme precipitation scenarios. We estimated that a new mercury treatment facility would result in a 24.7% reduction in Hg flux under baseline conditions and a 33.4% reduction under extreme precipitation scenarios. The study demonstrated the merit of this approach, which can be replicated for sites where information on flow, suspended solids, and Hg concentrations is available.

Keywords: integrated watershed; daily flux; model; site; mercury; flow

Journal Title: Journal of hazardous materials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.