LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhanced photocatalytic efficiency by direct photoexcited electron transfer from pollutants adsorbed on the surface valence band of BiOBr modified with graphitized C.

Photo by reskp from unsplash

Herein, a novel BiOBr photocatalyst with partial surface modification by graphitized C (BiOBr-Cg) was synthesized through a hydrothermal method with hydrothermal carbonation carbon (HTCC) as a slow-releasing carbon source and… Click to show full abstract

Herein, a novel BiOBr photocatalyst with partial surface modification by graphitized C (BiOBr-Cg) was synthesized through a hydrothermal method with hydrothermal carbonation carbon (HTCC) as a slow-releasing carbon source and characterized by experimental and theoretical methods. BiOBr-Cg exhibited excellent visible-light photocatalytic performance toward various refractory pollutants, such as bisphenol A, ibuprofen, ciprofloxacin, 2,4-dichlorophenoxyacetic acid, and diphenhydramine. The characterization results demonstrate that a strong molecular orbital interaction occurs between graphitized C and BiOBr, resulting in the formation of a new surface valence band on graphitized C. This not only promotes the oxidation of pollutants by surface holes but also reduces the recombination of carriers during the bulk phase transfer process, thereby increasing the number of photogenerated carriers. Intriguingly, the analytical results for degradation intermediates and other characterization techniques demonstrate that the pollutants adsorbed on the graphitized C of BiOBr-Cg can be directly excited through light irradiation and react along the organic radical degradation pathway in addition to pollutant degradation by holes and HO2•/O2•-.

Keywords: valence band; pollutants adsorbed; biobr; surface valence

Journal Title: Journal of hazardous materials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.