LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Efficiency assessment of ZVI-based media as fillers in permeable reactive barrier for multiple heavy metal-contaminated groundwater remediation.

Photo from archive.org

Four zero valent iron-based composites were prepared and applied as the reactive media of permeable reactive barriers. Batch tests and continuous-flow column experiments were conducted to assess the long-term performance… Click to show full abstract

Four zero valent iron-based composites were prepared and applied as the reactive media of permeable reactive barriers. Batch tests and continuous-flow column experiments were conducted to assess the long-term performance of these composites for possible utilization as fillers for PRB. The experimental results of the batch tests revealed that in single-metal systems, the removal efficiency of Cu(Ⅱ), Co(Ⅱ), Cr(Ⅵ) and As(Ⅲ) could reach 98% at equilibrium. Equilibrium data showed that composites displayed different selectivity values in binary and quaternary-component systems. For the continuous tests, column filled with chitosan-zero valent iron-based composites, exhibited optimal removal efficiency and achieved average removal values of 98.84%, 88.28%, 95.65% and 87.10% for Cu(Ⅱ), Co(Ⅱ), Cr(Ⅵ) and As(Ⅲ) during the whole 30-day operation, respectively. Dynamic removal improvement of multiple metals was observed with further assembly media, with average removal of 99.11%, 90.05% and 87.34% for Cu(Ⅱ), Co(Ⅱ) and As(Ⅲ), respectively. Combined with superficial characteristic analysis, the functional groups distributed on the surface of composites played a key role in metal sorption. Moreover, the adsorbed Cu(Ⅱ), Co(Ⅱ) and Cr(Ⅵ) gradually transferred to the mobile phase when the operational periods were prolonged, while As(Ⅲ) became more stable.

Keywords: metal; zvi based; permeable reactive; efficiency assessment; assessment zvi

Journal Title: Journal of hazardous materials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.