LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

In-situ production and activation of H2O2 for enhanced degradation of roxarsone by FeS2 decorated resorcinol-formaldehyde resins.

Photo from wikipedia

Fenton technology performs well in high-risk roxarsone (ROX) removal, but it is limited by the high H2O2 transportation and storage risks. Herein, FeS2 decorated resorcinol-formaldehyde resins (FeS2-RFR) were successfully prepared… Click to show full abstract

Fenton technology performs well in high-risk roxarsone (ROX) removal, but it is limited by the high H2O2 transportation and storage risks. Herein, FeS2 decorated resorcinol-formaldehyde resins (FeS2-RFR) were successfully prepared to in-situ produce and utilize H2O2 for efficient removal of ROX. Under solar light illumination, resorcinol-formaldehyde resins (RFR) efficiently generated a high concentration of H2O2, with a yield of 500 μmol g-1 h-1. FeS2 can in-situ decompose H2O2 to generate ·OH, participating in the oxidation of ROX. As a result, the FeS2-RFR catalyst degraded more than 97% of ROX within 2 h and ROX was selectively degraded into low-toxic As(V), which can be simply removed by traditional adsorption or precipitation processes. During the degradation of ROX, ·OH played a dominant role. Moreover, the cations (Na+, K+, and Ca2+), anions (SO42-, Cl-), and humic acid had no noticeable inhibition effect on ROX removal. Furthermore, FeS2-RFR can still remove 70% of ROX even after three cycles, proving that this in-situ photo-Fenton system exhibited stability. This study innovatively proposed a double-active site FeS2-RFR photocatalyst for in-situ production and activation of H2O2 and showed a sustainable and eco-friendly way for organoarsenic compounds degradation.

Keywords: h2o2; resorcinol formaldehyde; formaldehyde resins; fes2; rox

Journal Title: Journal of hazardous materials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.