LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Accumulation of microplastics in tadpoles from different functional zones in Hangzhou Great Bay Area, China: Relation to growth stage and feeding habits.

Photo from wikipedia

Microplastics (MPs) are ubiquitous in freshwater ecosystems, including inland small waterbodies (e.g., ponds and ditches), which are unique habitats for tadpoles. The uptake of MPs by tadpoles is influenced by… Click to show full abstract

Microplastics (MPs) are ubiquitous in freshwater ecosystems, including inland small waterbodies (e.g., ponds and ditches), which are unique habitats for tadpoles. The uptake of MPs by tadpoles is influenced by their habitat, life stage, and feeding strategy. In this study, we investigated MP levels in small waterbodies in three different functional zones from the Hangzhou Great Bay Area, China, and resident tadpoles at different stages of metamorphosis with different feeding habits. Our results indicated that MPs in all three sampling areas were predominantly fibers; and the highest abundances of MPs were observed in water (4.70 ± 2.30 items/L) and sediment (728 ± 324 items/kg) from a textile industrial area, likely the result of nearby human activities. There was no significant difference in MP number in tadpoles between areas; however, omnivorous tadpoles with labial teeth and horny beaks ingested more MPs than did filter feeders. Based on their developmental characteristics, the collected tadpoles were categorized as: pre-metamorphosis, pro-metamorphosis, and metamorphic climax. The MP levels exhibited an upward trend, and MP size gradually increased as tadpole development progressed. This suggests that MPs may accumulate in tadpoles as they grow and potentially affect their metamorphosis from larvae to frogs.

Keywords: hangzhou great; functional zones; area; zones hangzhou; different functional; stage feeding

Journal Title: Journal of hazardous materials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.