LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Impact of microbial inoculants combined with humic acid on the fate of estrogens during pig manure composting under low-temperature conditions.

Photo from wikipedia

To investigate the efficiency of psychrotrophic cellulose-degrading fungal strains (PCDFSs) and estrogen-degrading bacteria (EDBs) combined with humic acid (HA) on estrone (E1) and 17-β-estradiol (E2) degradation, five compost groups (T,… Click to show full abstract

To investigate the efficiency of psychrotrophic cellulose-degrading fungal strains (PCDFSs) and estrogen-degrading bacteria (EDBs) combined with humic acid (HA) on estrone (E1) and 17-β-estradiol (E2) degradation, five compost groups (T, HA, EDB, PCDFS, and CK) were prepared and composted for 32 days at 11-14°C. The results indicated that inoculation increased the temperature to 62.2°C and promoted E1 degradation to the lowest level of 100.1 ng/kg, while E2 was undetected from day 16. Metagenomic analysis revealed that inoculation altered the microbial community structure by increasing the abundance of cellulose-degrading fungi, especially Meyerozyma (16.7%) (among PCDFSs), and of estrogen-degrading bacteria, particularly Microbacterium (13.4%) (involved in EDBs). Moreover, inoculation increased the levels (>0.500%) of Gene Ontology (GO) associated with estrogen degradation, like 3-β-hydroxy-delta 5-steroid dehydrogenase and monooxygenase. Redundancy analysis demonstrated that temperature and Microbacterium were positively correlated with estrogen degradation. Structural equation model indicated that temperature and estrogen-degrading bacterial genera exhibited positive, significant (p < 0.001) and direct impacts on estrogen degradation. This is the first study to suggest that applying microbial inoculants and HA could accelerate estrogen degradation during composting in cold regions. The research outcomes offer a practical reference for managing compost safety, thereby decreasing its potential environmental and human health impacts.

Keywords: degradation; temperature; estrogen degradation; microbial inoculants; humic acid; combined humic

Journal Title: Journal of hazardous materials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.