LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhanced ferrate(VI)) oxidation of sulfamethoxazole in water by CaO2: The role of Fe(IV) and Fe(V).

Photo from wikipedia

Recently, the enhancing role of hydrogen peroxide (H2O2), a self-decay product of ferrate (Fe(VI)), on Fe(VI) reactivity has received increasing attention. In this study, we found that calcium peroxide (CaO2)… Click to show full abstract

Recently, the enhancing role of hydrogen peroxide (H2O2), a self-decay product of ferrate (Fe(VI)), on Fe(VI) reactivity has received increasing attention. In this study, we found that calcium peroxide (CaO2) as a slow-releasing reagent of H2O2 could also enhance the Fe(VI) performance for removing sulfamethoxazole (SMX). Compared with sole Fe(VI), sole CaO2 and Fe(VI)-H2O2 systems, the Fe(VI)-CaO2 system showed higher reactivity to remove SMX. The radical scavenger and chemical probe test results indicated that the better oxidation performance of Fe(VI)-CaO2 system than Fe(VI) alone was ascribed to the generation of Fe(Ⅳ) and Fe(Ⅴ) rather than •OH. In addition, the performance of Fe(VI)-CaO2 system for degradation of contaminants was also superior to Fe(VI)-Na2SO3, Fe(VI)-NaHSO3 and Fe(VI)-Na2S2O3 systems under the same experimental conditions. Moreover, the effects of critical operating parameters, inorganic anions, inorganic cations, and humic acid on the degradation of SMX by Fe(VI)-CaO2 system were revealed. The Fe(VI)-CaO2 system exhibited good applicability in authentic water. Finally, the underlying degradation intermediates of SMX by Fe(VI)-CaO2 system and their toxicity were confirmed. In conclusion, this study provides a new strategy for enhancing the oxidation capacity of Fe(VI) and comprehensively reveals the oxidation mechanism.

Keywords: oxidation; cao2; water; role; cao2 system

Journal Title: Journal of hazardous materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.