LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

In-situ biological effects, bioaccumulation, and multi-media distribution of organic contaminants in a shallow lake.

Photo from wikipedia

Anthropogenic activity-impacted aquatic environment contains a complex mixture of contaminants, and ecological risk assessment solely based on chemical analysis is insufficient and biological assessment is required. However, traditional assessment heavily… Click to show full abstract

Anthropogenic activity-impacted aquatic environment contains a complex mixture of contaminants, and ecological risk assessment solely based on chemical analysis is insufficient and biological assessment is required. However, traditional assessment heavily relies on laboratory bioassays, which may cause uncertainty due to inevitable laboratory-related artifact. A self-designed in-situ bioassay system was successfully applied to simultaneously evaluate water and sediment toxicity by co-exposure of two native species, Chinese rare minnows (Gobiocypris rarus) and Asian clams (Corbicula fluminea) in Tai Lake Basin, China. In-situ exposure caused pronouncedly lethal and sublethal effects (i.e., metabolic and oxidative stress, neurotoxicity, reproductive toxicity) on both fish and clams. Meanwhile, multi-media distribution of organic contaminants in water-sediment-biota system was analyzed. Besides hydrophobicity, metabolism was recognized as an influential factor on phase distribution of contaminants in water-fish and sediment-clam systems. Traditional hazard quotient (HQ) method based on environmental concentrations of 98 contaminants showed bias in risk assessment. Instead, a weight of evidence method by integrating three lines of evidence, including in-situ survival, enhanced integrated biomarker response values and environmental concentrations, successfully differentiate high- and moderate-risk sites in the shallow lakes. The present study incorporated in-situ bioassays into risk assessment using a weight of evidence approach, which reduced uncertainty in decision-making.

Keywords: media distribution; assessment; multi media; distribution; organic contaminants; distribution organic

Journal Title: Journal of hazardous materials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.