LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Flexible construct of N vacancies and hydrophobic sites on g-C3N4 by F doping and their contribution to PFOA degradation in photocatalytic ozonation.

Photo from wikipedia

N vacancies, hydrophobic sites and electron rich zone were simply regulated by doping F into g-C3N4 (CN) to accelerate photocatalytic ozonation of PFOA. Activity of F-CN was superior to that… Click to show full abstract

N vacancies, hydrophobic sites and electron rich zone were simply regulated by doping F into g-C3N4 (CN) to accelerate photocatalytic ozonation of PFOA. Activity of F-CN was superior to that of CN, with 74.3% PFOA removal by F-CN/Vis/O3 but only 57.1% by CN/Vis/O3. Experimental results and theory simulations suggested that the photogenerated hole (hvb+) oxidation with the help of N vacancies was vital for PFOA degradation. N vacancies on both CN and F-CN would trap O atom of PFOA and seize electron from α -CF2 group, which made PFOA more easily to be oxidized. Doping of F narrowed band gap, lowered the valence band position and enhanced the oxidation potential of hvb+. The hydrophobic sites would accelerate the mass transfer of O3 and PFOA, enhance O3's single electron reduction with ecb- to generate hydroxyl radicals (•OH) and reduce the recombination of hvb+-ecb-. Under the joint function of hvb+, N vacancies and •OH, PFOA degradation in F-CN/Vis/O3 proceeded through the gradually shortening of perfluoroalky chain and loss of CF2 unit. The acute and chronic toxicity of generated short-chain perfluorocarboxylic acid toward fish, green algae daphnid were predicted by ECOSAR. And the toxicity change of solutions was examined by luminescent bacteria.

Keywords: vacancies hydrophobic; photocatalytic ozonation; hydrophobic sites; pfoa; pfoa degradation

Journal Title: Journal of hazardous materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.