LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

When MXene (Ti3C2Tx) meet Ti/PbO2: An improved electrocatalytic activity and stability.

Photo from wikipedia

Stable electrode materials with high catalytic activity are urgently required for electrochemical degradation of refractory organic pollutants in wastewater treatment. Herein, high conductive MXene (Ti3C2Tx) was firstly fabricated by electrophoretic… Click to show full abstract

Stable electrode materials with high catalytic activity are urgently required for electrochemical degradation of refractory organic pollutants in wastewater treatment. Herein, high conductive MXene (Ti3C2Tx) was firstly fabricated by electrophoretic deposition (EPD) as an interlayer for preparing a novel PbO2 electrode. The well-conducted Ti3C2Tx interlayer significantly improved the electrochemical performance of the EPD-2.0/PbO2 (EPD time was 2.0 min) electrode with the charge transfer resistance decreased by 9.51 times, the inner active sites increased by 5.21 times and the ∙OH radicals generation ability enhanced by 4.07 times than the control EPD-0/PbO2 anode. Consequently, the EPD-2.0/PbO2 electrode achieved nearly 100% basic fuchsin (BF) and 86.78% COD removal efficiency after 3.0 h electrolysis. Therefore, this new PbO2 electrode presented a promising potential for electrochemical degradation of BF and the new Ti3C2Tx middle layer could also be used to fabricate other efficient and stable anodes, such as SnO2, MnO2, TiO2, etc.

Keywords: pbo2 electrode; pbo2; activity; mxene ti3c2tx; epd pbo2

Journal Title: Journal of hazardous materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.