LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Electrosorption of phenolic compounds from olive mill wastewater: Mass transport consideration under a transient regime through an alginate-activated carbon fixed-bed electrode.

Photo by shalone86 from unsplash

Olive mill wastewater (OMWW) is an environmentally critical effluent, specifically due to its high content of phenolic compounds (PCs), which are hazardous due to their antimicrobial activities in water. However,… Click to show full abstract

Olive mill wastewater (OMWW) is an environmentally critical effluent, specifically due to its high content of phenolic compounds (PCs), which are hazardous due to their antimicrobial activities in water. However, their properties have good health effects at suitable doses. For the first time, the electrosorption of PCs from actual OMWW has been proposed for their possible recovery as value-added compounds, while decontaminating OMWW. A bio-sourced alginate-activated carbon (AC) fixed-bed electrode was prepared based on the reuse of olive pomace solid waste as powdered AC. At the optimal AC content (1% w/v), the internal ohmic drop voltage was lower (2.26 V) and the mass transport coefficient was higher (9.7 10-5 m s-1) along with the diffusivity (7.3 10-9 m2 s-1), which led to enhanced electrosorption rates. Afterward, an optimal electrode potential was obtained (-1.1 V vs. Ag/AgCl), while higher voltages led to faradaic reactions. Moreover, the adsorption capacity was lower (123 mg g-1) than that of electrosorption (170 mg g-1) and was even higher (307 mg g-1) with actual effluents. This was probably due to the influence of electromigration, which was confirmed by new models that could predict the electrosorption kinetics well considering mass transport and acid dissociation constants.

Keywords: mass transport; mill wastewater; electrosorption; olive mill

Journal Title: Journal of hazardous materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.