In this work, lignin peroxidase (LiP) was extracted for the in vitro degradation of a persistent compound (propranolol, PPN). The results showed that 94.2% of PPN was degraded at 30 U L-1… Click to show full abstract
In this work, lignin peroxidase (LiP) was extracted for the in vitro degradation of a persistent compound (propranolol, PPN). The results showed that 94.2% of PPN was degraded at 30 U L-1 LiP activity and 10 mg L-1 PPN. The PPN degradation rate increased from 33.5% to 94.2% when the veratryl alcohol (VA) concentration varied from 0 to 180 µM, but decreased to 73.1% with further VA addition. This phenomenon confirmed that VA was indispensable, however, it also acted as a competitive inhibitor of PPN oxidation. Computational analysis revealed that the Trp171…iron porphyrin (TRP-FeP) path was responsible for specific substrate (e.g., VA) transformation, and another long-range electron transfer (LRET) path through His-Asp…FeP (HSP-FeP) was discovered for non-specific substrate (e.g., PPN) degradation. These two electron-transfer routes shared one catalytic center, and VA protected the enzyme from H2O2-dependent inactivation. The HSP-FeP path transformed PPN through single electron transfer or H abstraction mechanisms. In addition, hydroxyl radicals generated in the LiP/H2O2 system were involved in the hydroxylation of the PPN intermediates. Possible degradation pathways were deduced using these degradation mechanisms and mass-spectrometry analysis. The multipath degradation mechanism endowed LiP with a remarkable capacity for removing various recalcitrant pollutants in environmental remediation.
               
Click one of the above tabs to view related content.