LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Pitch-based porous polymer beads for highly efficient iodine capture.

Photo from wikipedia

The efficient and safe capture of volatile radioiodine is of great significance in the reprocessing of spent fuel. Herein, the millimeter-scale pitch-based hyper-cross-linked porous polymers@polyethersulfone (PHCP@PES) composite beads were firstly… Click to show full abstract

The efficient and safe capture of volatile radioiodine is of great significance in the reprocessing of spent fuel. Herein, the millimeter-scale pitch-based hyper-cross-linked porous polymers@polyethersulfone (PHCP@PES) composite beads were firstly synthesized for the removal of volatile iodine and methyl iodide. PHCP@PES beads exhibit high iodine vapor and methyl iodide uptake capacities of 770.0 mg/g and 186.5 mg/g, respectively. More impressively, the uptake capacities of PHCP@PES (744.5 mg/g for iodine vapor and 180 mg/g for methyl iodide) remained almost unchanged after treatment with 3 mol/L of nitric acid. The rich interconnected pore structure of PHCP@PES promotes the rapid physical capture of iodine and methyl iodide. Intrinsic features such as low-cost preparation, good mechanical properties as well as thermal, acid stability and excellent performance in iodine capture indicate that PHCP@PES can be used as a potential candidate for the removal of radioactive iodine in the exhaust gas stream of post-treatment plants.

Keywords: iodine capture; iodine; methyl iodide; pitch based; capture; phcp pes

Journal Title: Journal of hazardous materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.