LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Response of fungi-microalgae pellets to copper regulation in the removal of sulfonamides and release of dissolved organic matters.

Photo from wikipedia

Both sulfonamides (SAs) and copper (Cu(II)) were frequently detected together in swine wastewater. In this study, the regulation of Cu(II) on SAs adsorption and release of dissolved organic matters (DOMs)… Click to show full abstract

Both sulfonamides (SAs) and copper (Cu(II)) were frequently detected together in swine wastewater. In this study, the regulation of Cu(II) on SAs adsorption and release of dissolved organic matters (DOMs) by fungi-microalgae pellets (FM-pellets) were investigated. Aspergillus oryzae pellets were prepared for combination with Chlorella vulgaris and the optimal conditions were at agitation speed of 130 rpm, fungi to microalgae ratio of 10:1 and the combined time of 3 h with the highest combination efficiency of 98.65%. The results showed that adsorption was the main mechanism for SAs removal. FM-pellets exhibited a high SAs adsorption potential within 6 h, and the adsorption capacity of sulfamethazine (SMZ), sulfamonomethoxine (SMM) and sulfamethoxazole (SMX) was 1.07, 0.94 and 1.67 mg/g, respectively. Furthermore, the removal of SMX, SMZ and SMM was greatly promoted from 62.31% to 85.21%, 58.71-67.91% and 64.17-80.31%, respectively, under the presence of 2 mg/L Cu(II) through ion exchange and adsorption bridging. DOMs were analyzed by the parallel factor (PARAFAC) to demonstrate the response mechanism of FM-pellets to Cu(II). Protein-like substances and NADH in DOMs released by FM-pellets formed complexes with Cu(II) to alleviate the damage on the organism. These findings provide new insights into the mechanism and response of Cu(II) in the removal of SAs by FM-pellets.

Keywords: dissolved organic; response; fungi microalgae; release dissolved; adsorption; organic matters

Journal Title: Journal of hazardous materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.