Abstract This article provides a status review on the chemical synthesis, structural transformation, morphological engineering, and band gap energy tuning of Cu–Sn–S(Se) nanoparticles (NPs). As the fabrication of Cu–Sn–S(Se) NPs… Click to show full abstract
Abstract This article provides a status review on the chemical synthesis, structural transformation, morphological engineering, and band gap energy tuning of Cu–Sn–S(Se) nanoparticles (NPs). As the fabrication of Cu–Sn–S(Se) NPs based solar cells technology faces several problems, the photovoltaic behavior of Cu–Sn–S(Se) NPs is examined using photocurrent response. Further, the influence of nanoparticle ink properties on the deposition of NPs based absorber layer is discussed in detail. The challenges and prospects of nanoparticle based Cu–Sn–S(Se) solar cells are discussed. In addition, other photovoltaic applications such as photocatalytic, hydrogen production, and dye-degradation of Cu–Sn–S(Se) NPs are also outlined.
               
Click one of the above tabs to view related content.