LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

3D-monoclinic M–BTC MOF (M = Mn, Co, Ni) as highly efficient catalysts for chemical fixation of CO2 into cyclic carbonates

Photo from archive.org

Abstract [(CH3)2NH2][M3(BTC)(HCOO)4(H2O)].H2O (M–BTC, M = Mn, Ni, Co) were prepared under hydrothermal conditions and used as highly efficient catalysts for cycloaddition of CO2 with epichlorohydrin (ECH). The microstructure and physicochemical properties of… Click to show full abstract

Abstract [(CH3)2NH2][M3(BTC)(HCOO)4(H2O)].H2O (M–BTC, M = Mn, Ni, Co) were prepared under hydrothermal conditions and used as highly efficient catalysts for cycloaddition of CO2 with epichlorohydrin (ECH). The microstructure and physicochemical properties of the compounds were determined by PXRD, FT-IR, XPS, N2-adsorption, TG–DSC, NH3–TPD and CO2–TPD. 98.01% conversion of ECH and 96.05% selectivity to chloropropene carbonate was obtained over the Mn–BTC under the optimized reaction conditions (105 °C, 3.0 MPa, 9 h, 1.5 wt.% of ECH). Besides, the recyclability result exhibited the Mn–BTC compound can be utilized as least three times with a slight reduction in its catalytic ability. In addition, cycloaddition of CO2 with other epoxides and DFT calculation were also performed. The result exhibited the yield followed the order: ECH > 1, 2-epoxybutane > propene oxide > Allyl glycidyl ether, which was mainly determined by the energy of reaction.

Keywords: monoclinic btc; mof highly; btc; btc mof; efficient catalysts; highly efficient

Journal Title: Journal of Industrial and Engineering Chemistry
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.