Abstract Although the intrinsic characteristics of DNA molecules and carbon nanotubes (CNT) are well known, fabrication methods and physical characteristics of CNT-embedded DNA thin films are rarely investigated. We report… Click to show full abstract
Abstract Although the intrinsic characteristics of DNA molecules and carbon nanotubes (CNT) are well known, fabrication methods and physical characteristics of CNT-embedded DNA thin films are rarely investigated. We report the construction and characterization of carboxyl (–COOH) group-modified multi-walled carbon nanotube (MWCNT–COOH)-embedded DNA and cetyltrimethyl-ammonium chloride-modified DNA (DNA–CTMA) composite thin films. Here, we examine the structural, compositional, chemical, spectroscopic, and electrical characteristics of DNA and DNA–CTMA thin films consisting of various concentrations of MWCNT–COOH. The MWCNT–COOH-embedded DNA and DNA–CTMA composite thin films may offer a platform for developing novel optoelectronics, energy harvesting, and sensing applications in physical, chemical, and biological sciences.
               
Click one of the above tabs to view related content.