LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synthesis, characterization, and kinetic study of activated carbon modified by polysulfide rubber coating for aqueous hexavalent chromium removal

Photo by bastroloog from unsplash

Abstract Activated carbon (AC) is a widely used adsorbent with a limited selectivity for chromium species. In this study, polysulfide rubber (PSR) polymer was synthesized, characterized by FTIR, and coated… Click to show full abstract

Abstract Activated carbon (AC) is a widely used adsorbent with a limited selectivity for chromium species. In this study, polysulfide rubber (PSR) polymer was synthesized, characterized by FTIR, and coated on F400 granular AC to obtain AC-PSR. The material properties of this composite adsorbent were investigated using SEM, TEM, EDS, TGA, BET isotherm, and XPS. The effectiveness of AC-PSR for aqueous Cr(VI) removal was investigated, and compared against virgin AC. The results showed that despite a 23% decrease in the surface area of AC after PSR coating, AC-PSR had a higher capacity for Cr(VI) adsorption. Adsorption followed a pseudo-second-order biphasic diffusion model for both AC and AC-PSR. The reaction rate constants showed that despite faster initial kinetics between AC and Cr(VI) during the film diffusion step, AC-PSR exhibited faster kinetics during the intraparticle diffusion step. The Langmuir isotherm model was found to be the best model to describe the experimental data, which showed a higher adsorption capacity for AC-PSR (QM,AC = 3.472 mg/g vs. QM,AC-PSR = 8.929 mg/g) and a stronger binding between Cr(VI) and AC-PSR (bA,AC = 0.391 L/mg vs. bA,AC-PSR = 0.696 L/mg). Regenerated AC-PSR showed an 8% increase in Cr(VI) removal efficiency after the first cycle, and then maintained a ∼98% Cr(VI) removal for three additional successive cycles.

Keywords: psr; polysulfide rubber; removal; chromium; activated carbon

Journal Title: Journal of Industrial and Engineering Chemistry
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.