Abstract Poly(lactic- co -glycolic acid) (PLGA)-poly ethylene glycol (PEG) based amphiphilic branched copolymer nanoparticles (NPs) have been developed for controlled release of tuberculosis (TB) drugs which include rifampicin (RIF), isoniazid… Click to show full abstract
Abstract Poly(lactic- co -glycolic acid) (PLGA)-poly ethylene glycol (PEG) based amphiphilic branched copolymer nanoparticles (NPs) have been developed for controlled release of tuberculosis (TB) drugs which include rifampicin (RIF), isoniazid (INH) and pyrazinamide (PYZ). The drug loading efficiency and the percentage drug content of polymer NPs increase by increasing the amount of PEG content in polymer NPs. The branched PLGA-PEG based copolymer NPs exhibit initial burst release followed by sustained release of RIF for 840 h, INH for 72 h, and PYZ for 720 h. The branched citrate-PEG-PLGA copolymer NPs can act as potential drug carriers when compared to their linear analogues.
               
Click one of the above tabs to view related content.