LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

In vitro controlled release of tuberculosis drugs by amphiphilic branched copolymer nanoparticles

Photo from wikipedia

Abstract Poly(lactic- co -glycolic acid) (PLGA)-poly ethylene glycol (PEG) based amphiphilic branched copolymer nanoparticles (NPs) have been developed for controlled release of tuberculosis (TB) drugs which include rifampicin (RIF), isoniazid… Click to show full abstract

Abstract Poly(lactic- co -glycolic acid) (PLGA)-poly ethylene glycol (PEG) based amphiphilic branched copolymer nanoparticles (NPs) have been developed for controlled release of tuberculosis (TB) drugs which include rifampicin (RIF), isoniazid (INH) and pyrazinamide (PYZ). The drug loading efficiency and the percentage drug content of polymer NPs increase by increasing the amount of PEG content in polymer NPs. The branched PLGA-PEG based copolymer NPs exhibit initial burst release followed by sustained release of RIF for 840 h, INH for 72 h, and PYZ for 720 h. The branched citrate-PEG-PLGA copolymer NPs can act as potential drug carriers when compared to their linear analogues.

Keywords: amphiphilic branched; branched copolymer; release; copolymer nanoparticles; controlled release; copolymer

Journal Title: Journal of Industrial and Engineering Chemistry
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.