Abstract Scaffolds consisting of cylindrical struts are one of the high-potential tissue engineering materials because the highly porous structure can easily induce cell infiltration/migration and efficiently deliver nutrients to the… Click to show full abstract
Abstract Scaffolds consisting of cylindrical struts are one of the high-potential tissue engineering materials because the highly porous structure can easily induce cell infiltration/migration and efficiently deliver nutrients to the cells. In addition, cryopreservable scaffolds have attracted much interest in tissue engineering because they can be prospective ready-to-use “living” biomaterials consisting of a patient’s own cells. In this study, we investigated a cryopreservable cell-printed scaffold consisting of microscale cylindrical struts. To fabricate the scaffold, we developed a 3D cell-printing system supplemented with microfluidic channels, a core-shell nozzle, UV treatment system, and low-temperature working plate. The scaffold consisted of a cell-laden collagen/dimethyl sulfoxide (DMSO) mixture in the core region and a methacrylate gelatin (GelMA)/DMSO mixture in the shell region. After cryopreservation, the preosteoblasts (MC3T3-E1) loaded in the scaffold showed reasonable cell viability (∼85%). Moreover, no significant difference was observed in the cell proliferations and ALP activities of the cryopreserved scaffold and non-cryopreserved scaffold. Based on these results, we believe that the fabrication process can be one of the potential techniques for fabricating cryopreservable scaffolds consisting of cylindrical struts.
               
Click one of the above tabs to view related content.