Inflammatory bowel disease (IBD) is thought to be caused by an aberrant host response to the commensal enteric flora in genetically susceptible individuals. Dendritic cells (DCs) play a key role… Click to show full abstract
Inflammatory bowel disease (IBD) is thought to be caused by an aberrant host response to the commensal enteric flora in genetically susceptible individuals. Dendritic cells (DCs) play a key role in the regulation of this response as they sample gut commensals. In healthy individuals DCs actively contribute to tolerance upon recognition of these resident bacteria, whereas in individuals with IBD, DCs will initiate an inflammatory response. To mimic the disease response in vitro, human monocyte-derived DCs were matured with E. coli causing the cells to produce high levels of the pro-inflammatory cytokine IL-12/IL-23p40 (p40) and low levels of the anti-inflammatory cytokine IL-10. A siRNA-based screening assay was developed and screened to identify potential therapeutic targets that shift this balance towards an immunosuppressive state with lower levels of p40 and higher levels of IL-10. The screening assay was optimized and quality controlled using non-targeting controls and positive control siRNAs targeting IL12B and TLR4 transcripts. In the primary screen, smartpool siRNAs were screened for reduction in p40 expression, induction of IL-10 levels, or increase in IL-10:p40 ratios without affecting cell viability. All potential targets were taken forward into a confirmation screen in a different DC donor in which four individual siRNAs per target were screened. At least two siRNAs per target should have an effect to be considered a valid target. This screen resulted in a concise list of ten genes, of which their role in DC maturation is currently being investigated.
               
Click one of the above tabs to view related content.