LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Tumor cell uptake and selectivity of gadolinium(III)-phosphonium complexes: The role of delocalisation at the phosphonium centre.

Photo by nci from unsplash

The synthesis of a series of bifunctional Gd(III) complexes 1-3 covalently bound to arylphosphonium cations possessing a varying degree of delocalisation at the phosphonium centre is presented. The influence of… Click to show full abstract

The synthesis of a series of bifunctional Gd(III) complexes 1-3 covalently bound to arylphosphonium cations possessing a varying degree of delocalisation at the phosphonium centre is presented. The influence of the degree of delocalisation was investigated with regards to in vitro cytotoxicity, cellular uptake of Gd, tumor-cell selectivity and intracellular localisation of Gd within human glioblastoma (T98G) and human glial (SVG p12) cells. Cellular uptake and selectivity studies for the Gd(III) complexes indicate that a reduced delocalisation at the phosphonium centre can lead to an enhanced Gd uptake into SVG p12 cells which results in a decrease in the overall tumor cell selectivity. Synchrotron X-ray fluorescence (microbeam XRF) imaging has demonstrated for the first time that uniform uptake of Gd(III) complex 2 within a population of T98G cells increased as a function of increasing Gd incubation times. The Gd maps show dispersed spots of high intensity which are consistent with mitochondrial uptake.

Keywords: phosphonium; delocalisation phosphonium; tumor cell; delocalisation; phosphonium centre; selectivity

Journal Title: Journal of inorganic biochemistry
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.