LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Resonance Raman spectroscopic studies of peroxo and hydroperoxo intermediates in lauric acid (LA)-bound cytochrome P450 119.

Photo by sharonmccutcheon from unsplash

Cytochromes P450 bind and cleave dioxygen to generate a potent intermediate compound I, capable of hydroxylating inert hydrocarbon substrates. Cytochrome P450 119, a bacterial cytochrome P450 that serves as a… Click to show full abstract

Cytochromes P450 bind and cleave dioxygen to generate a potent intermediate compound I, capable of hydroxylating inert hydrocarbon substrates. Cytochrome P450 119, a bacterial cytochrome P450 that serves as a good model system for the study of the intermediate states in the P450 catalytic cycle. CYP119 is found in high temperature and sulfur rich environments. Though the natural substrate and redox partner are still unknown, a potential application of such thermophilic P450s is utilizing them as biocatalysts in biotechnological industry; e.g., the synthesis of organic compounds otherwise requiring hostile environments like extremes of pH or temperature. In the present work the oxygenated complex of this enzyme bound to lauric acid, a surrogate substrate known to have a good binding affinity, was studied by a combination of cryoradiolysis and resonance Raman spectroscopy, to trap and characterize active site structures of the key fleeting enzymatic intermediates, including the peroxo and hydroperoxo species.

Keywords: lauric acid; p450; peroxo hydroperoxo; cytochrome p450; p450 119; resonance raman

Journal Title: Journal of inorganic biochemistry
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.