LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mitochondrial targeted rhodium(III) complexes: Synthesis, characterized and antitumor mechanism investigation.

Photo from wikipedia

Recently, rhodium complexes have received intensive attentions due to their tunable chemical and biological properties as well as attractive antitumor activity. In this work, two imidazole triphenylamino rhodium complexes [Rh(ppy)2L1]PF6… Click to show full abstract

Recently, rhodium complexes have received intensive attentions due to their tunable chemical and biological properties as well as attractive antitumor activity. In this work, two imidazole triphenylamino rhodium complexes [Rh(ppy)2L1]PF6 (Rh1) and [Rh(ppy)2L2]PF6 (Rh2) (ppy = 2-phenylpyridine, L1 = 4-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)-N,N-diphenylaniline, L2 = N-(4-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)phenyl)-4-methyl-N-(p-tolyl)aniline) have been synthesized and characterized. Both complexes display stronger anticancer activity against a various of cancer cells than cisplatin and they can effectively localize to mitochondria. Further mechanism studies show that Rh1 induce caspase-dependent apoptosis through mitochondrial damage, down-regulate the expression of B-cell lymphoma-2 (Bcl-2)/Bcl2-associated x (Bax) and reactive oxygen species (ROS) elevation. Our work provides a strategy for the construction of highly effective anticancer agents targeting mitochondrial metabolism through rational modification of rhodium complexes.

Keywords: mechanism; rhodium; rhodium complexes; targeted rhodium; mitochondrial targeted; antitumor

Journal Title: Journal of inorganic biochemistry
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.