LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

New titanocene derivative with improved stability and binding ability to albumin exhibits high anticancer activity.

Photo from wikipedia

Titanium-based therapies have emerged as a promising alternative for the treatment of cancer patients, particularly those with cisplatin resistant tumors. Unfortunately, some titanium compounds show stability and solubility problems that… Click to show full abstract

Titanium-based therapies have emerged as a promising alternative for the treatment of cancer patients, particularly those with cisplatin resistant tumors. Unfortunately, some titanium compounds show stability and solubility problems that have hindered their use in clinical practice. Here, we designed and synthesized a new titanium complex containing a titanocene fragment, a tridentate ligand to improve its stability in water, and a long aliphatic chain, designed to facilitate a non-covalent interaction with albumin, the most abundant protein in human serum. The stability and human serum albumin affinity of the resulting titanium complex was investigated by UV-Vis absorption and fluorescence spectroscopy techniques. Complex [TiCp2{(OOC)2py-O-myr}] (3) (myr = C14H29, py = pyridine) and its analogous [TiCp2{(OOC)2py-OH}] (4), lacking the aliphatic chain, showed improved stability in phosphate saline buffer compared with [TiCp2Cl2] (1). 3 showed a strong interaction with human serum albumin in a 1:1 stoichiometry. The cytotoxic effect of 3 was higher compared to [TiCp2Cl2] in tumor cell lines and showed potential tumor selectivity when assayed in non-tumor human epithelial cells. Finally, 3 showed an antiproliferative effect on cancer cells, decreasing the population in the S phase, and increasing apoptotic cells in a significant manner. All this makes the novel Ti(IV) compound 3 a firm candidate to continue further studies of its therapeutic potential in vitro and in vivo.

Keywords: albumin; improved stability; human serum; new titanocene; stability

Journal Title: Journal of inorganic biochemistry
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.