LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Two ferritin genes (MdFerH and MdFerL) are involved in iron homeostasis, antioxidation and immune defense in housefly Musca domestica.

Photo by eriic from unsplash

Ferritin is a ubiquitous multi-subunit iron storage protein, made up of heavy chain and light chain subunits. In recent years, invertebrate ferritins have emerged as an important, yet largely underappreciated,… Click to show full abstract

Ferritin is a ubiquitous multi-subunit iron storage protein, made up of heavy chain and light chain subunits. In recent years, invertebrate ferritins have emerged as an important, yet largely underappreciated, component of host defense and antioxidant system. Here, two alternatively spliced transcripts encoding for a unique ferritin heavy chain homolog (MdFerH), and a transcript encoding for a light chain homolog (MdFerL) are cloned and characterized from Musca domestica. Comparing with MdFerH1, a fragment is absent at the 5' untranslated region of MdFerH2, where a putative iron response element is present. Amino acid sequence analysis shows that MdFerH possesses a strictly conserved ferroxidase site, while MdFerL has a putative atypical active center. Tissue distribution analysis indicates that MdFers are enriched expressed in gut. When the larvae receive diverse stimulations, including challenge by bacteria, exposure to excess Fe2+, doxorubicin or ultraviolet, the expression of MdFers is positively up-regulated in different degrees and different temporal patterns, indicating their potential roles in oxidative stress. The two mRNA isoforms of MdFerH appear to be differentially expressed in different tissues, but seem to show the similar expression patterns under diverse stress conditions. Further investigation reveals that silencing MdFers can alter the redox homeostasis, leading elevated mortalities of larvae following bacterial infection. Inspiringly, recombinant MdFerL produced in Pichia pastoris shows significant iron-chelating activity in vitro. These results suggest a pivotal role of ferritins from housefly in iron homeostasis, antibacterial immunity and redox balance.

Keywords: homeostasis; iron homeostasis; musca domestica; chain; defense; iron

Journal Title: Journal of insect physiology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.