LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

New solitary wave structures to the (2 + 1)-dimensional KD and KP equations with spatio-temporal dispersion

Photo from wikipedia

Abstract The present paper studies the novel generalized ( G ′ / G ) -expansion technique to two nonlinear evolution equations: The ( 2 + 1 ) -dimensional Konopelchenko-Dubrovsky (KD)… Click to show full abstract

Abstract The present paper studies the novel generalized ( G ′ / G ) -expansion technique to two nonlinear evolution equations: The ( 2 + 1 ) -dimensional Konopelchenko-Dubrovsky (KD) equation and the ( 2 + 1 ) -dimensional Kadomtsev-Petviashvili (KP) equation and acquires some new exact answers. The secured answers include a particular variety of solitary wave solutions, such as periodic, compaction, cuspon, kink, soliton, a bright periodic wave, Bell shape soliton, dark periodic wave and various kinds of soliton of the studied equation are achieved. These new particular kinds of solitary wave solutions will improve the earlier solutions and help us understand the physical meaning further and interpret the nonlinear generation of nonlinear wave equations of fluid in an elastic tube and liquid, including small bubbles and turbulence and the acoustic dust waves in dusty plasmas. Additionally, the studied approach could also be employed to obtain exact wave solutions for the other nonlinear evolution equations in applied sciences.

Keywords: wave solutions; wave structures; solitary wave; wave; structures dimensional; new solitary

Journal Title: Journal of King Saud University - Science
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.