LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ignition temperatures and flame velocities of metallic nanomaterials

Photo from wikipedia

Abstract The production of materials with dimensions in the nanometre range has continued to increase in recent years. In order to ensure safety when handling these products, the hazard potential… Click to show full abstract

Abstract The production of materials with dimensions in the nanometre range has continued to increase in recent years. In order to ensure safety when handling these products, the hazard potential of such innovative materials must be known. While several studies have already investigated the effects of explosions (such as maximum explosion pressure and maximum pressure rise) of powders with primary particles in the nanometre range, little is known about the ignition temperatures and flame velocities. Therefore, the minimum ignition temperature (MIT) of metallic nano powders (aluminium, iron, copper and zinc) was determined experimentally in a so called Godbert-Greenwald (GG) oven. Furthermore, the flame velocities were determined in a vertical tube. In order to better classify the test results, the tested samples were characterised in detail and the lower explosion limits of the tested dust samples were determined. Values for the burning velocity of aluminium nano powders are higher compared to values of micrometre powders (from literature). While MIT of nanometre aluminium powders is within the range of micrometre samples, MIT of zinc and copper nano powders is lower than values reported in literature for respective micrometre samples.

Keywords: ignition temperatures; temperatures flame; velocities metallic; nano powders; ignition; flame velocities

Journal Title: Journal of Loss Prevention in the Process Industries
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.