LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Influence assessment of inlet parameters on thermal risk and productivity: Application to the epoxidation of vegetable oils

Photo from wikipedia

Abstract The influence of inlet parameters on the production and thermal risk of complex chemical systems can be cumbersome to evaluate. To determine the optimum safe operating conditions, one needs… Click to show full abstract

Abstract The influence of inlet parameters on the production and thermal risk of complex chemical systems can be cumbersome to evaluate. To determine the optimum safe operating conditions, one needs to solve complex differential equations derived from energy and material balances. This robust approach cannot be made on-site, and it is essential to propose simplest tools to evaluate rapidly the performance and safety of some operating conditions. This is the aim of this paper that establishes explicit relationships between the production and thermal risk parameters, and the inlet parameters. In addition, it also proposes a Pareto chart that can be used to make the tradeoff between safety and performance. Such relationships and chart were developed for the production of epoxidized cottonseed oil under isoperibolic and semi-batch mode. The kinetic model developed by Zheng et (Zheng et al., 2016). was used. First, a numerical approach, i.e., least square method, was used to find explicit relationships between thermal risk parameters, production parameters and six inlet parameters. The use of such an approach allows a better understanding of this process. Second, safety and performance indicators are proposed and discussed to evaluate the operating conditions thanks to a simple and intuitive schema. Besides, this approach can be used to find the optimum conditions more rapidly.

Keywords: inlet parameters; influence; thermal risk; production

Journal Title: Journal of Loss Prevention in The Process Industries
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.