LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Near-infrared emitting YVO 4 :Nd 3+ nanoparticles for high sensitive fluorescence thermometry

Photo from academic.microsoft.com

Abstract Nanoscale sub-degree non-contact temperature sensing is in high demand in many fields of science and technology. In this work, we report simply synthesized near-infrared emitting YVO4:Nd3+ nanoparticles as ratiometric… Click to show full abstract

Abstract Nanoscale sub-degree non-contact temperature sensing is in high demand in many fields of science and technology. In this work, we report simply synthesized near-infrared emitting YVO4:Nd3+ nanoparticles as ratiometric luminescence thermal sensors. For thermal sensing, the dependences of the emission bands of 4F5/2 – 4I9/2 and 4F3/2 – 4I9/2 transitions from 123 up to 873 K were measured and calibrated as functions of the temperature. The thermal sensitivity was obtained and compared with others Nd3+-doped micro- and nanocrystals presented in the literature. Large energy gap between 4F5/2 and 4F3/2 levels used for nanothermometry leads to the significant enhancement of thermal sensitivity and widening of temperature sensing range compared with thermometers based on Stark sublevels intensity ratio. Effect of doping concentration on the thermal sensitivity was studied. Sub-degree thermal resolution obtained at 313 K and 673 K make YVO4:Nd3+ nanoparticles perspective material for accurate temperature sensing in both biological and technical applications.

Keywords: infrared emitting; near infrared; temperature sensing; thermal sensitivity; emitting yvo; yvo nanoparticles

Journal Title: Journal of Luminescence
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.