LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mid-infrared spectroscopy of Pr-doped materials

Photo from academic.microsoft.com

Abstract Solid state lanthanide doped lasers primarily operate in the ultraviolet, visible, near infrared and short-wavelength infrared out to around 2.1 µm. At longer wavelengths, the transitions in conventional oxide crystal… Click to show full abstract

Abstract Solid state lanthanide doped lasers primarily operate in the ultraviolet, visible, near infrared and short-wavelength infrared out to around 2.1 µm. At longer wavelengths, the transitions in conventional oxide crystal and glass materials become susceptible to multiphonon quenching due to their relatively large phonon energy. The use of low phonon materials can minimize the nonradiative quenching, opening up possibilities for solid state lanthanide lasers operating in the mid-infrared (MIR). This provides motivation to study the spectroscopy of lanthanide ions in bromide, chloride and fluoride materials, which have relatively low phonon energies. In this article, the MIR spectroscopy or praseodymium ions in five different host materials is studied, specifically KPb 2 Br 5 (KPB), LaF 3 , KYF 4 (KYF), BaY 2 F 8 (BYF) and YLiF 4 (YLF) host crystals. The MIR emission cross sections have been measured from 3 to 6 µm and reciprocity of absorption and emission is utilized to validate the results. The lifetime dynamics in the MIR are covered for various pump and emission wavelengths. Results are also presented on MIR emission from 6.5 to 8.5 µm in a Pr: KPB crystal, which, to the best of the authors knowledge, is the first such measurement of luminescence in this wavelength range that has been published. © 2018 Elsevier Science. All rights reserved

Keywords: infrared spectroscopy; spectroscopy doped; mid infrared; spectroscopy; doped materials; emission

Journal Title: Journal of Luminescence
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.