LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effects of Yb doping on the structure and near band-edge emission of ZnO thin films on Si after high temperature annealing

Photo from wikipedia

Abstract In this work, we have investigated the effects of ytterbium (Yb) doping concentration on the structure and near band-edge (NBE) photoluminescence (PL) of ZnO thin films on Si after… Click to show full abstract

Abstract In this work, we have investigated the effects of ytterbium (Yb) doping concentration on the structure and near band-edge (NBE) photoluminescence (PL) of ZnO thin films on Si after high temperature annealing. The films were made by magnetron sputtering in an Ar:O2 atmosphere. The structure of the films have been studied by Rutherford backscattering spectrometry, X-ray diffraction (XRD), scanning electron microscopy, and X-ray photoelectron spectroscopy. XRD indicates that the crystallinity of the ZnO improves with annealing temperature in the range 700–1000 °C; and after the 1000 °C annealing, the crystallinity of the films show overall an improvement for increasing Yb concentration up to 1.35 at.%. At the higher temperatures the films react with Si substrate to form silicates with Zn and Yb, and the Yb has redistributed in the film and piles up towards the Si substrate. The PL measurements show that the NBE PL intensity of the films is correlated with the crystallinity for variations in annealing temperature and Yb concentration. The PL excitation measurements suggest that the films prepared with Yb addition have higher NBE PL efficiency than the un-doped ZnO, while the energy transfer between the host ZnO and Yb ions are not efficient.

Keywords: temperature; zno; structure near; band edge; near band

Journal Title: Journal of Luminescence
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.