LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Arc length as a global conformal parameter for analytic curves

Photo from archive.org

Abstract We show that arc length is a global conformal parameter for analytic curves and that this parameter can be used to decide whether the domain of definition of an… Click to show full abstract

Abstract We show that arc length is a global conformal parameter for analytic curves and that this parameter can be used to decide whether the domain of definition of an analytic curve can be extended or not. The maximal extension with respect to the arc length parameter is the largest possible extension (over all parametrizations of the curve). Our proof is elementary, simple and short. Several examples are given in the plane, and the results remain true for curves in an arbitrary Euclidean space R k .

Keywords: arc length; length; parameter analytic; global conformal; conformal parameter; length global

Journal Title: Journal of Mathematical Analysis and Applications
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.