Abstract Using the moving plane method, we obtain a Liouville type theorem for nonnegative solutions of the Neumann problem { div ( y a ∇ u ( x , y… Click to show full abstract
Abstract Using the moving plane method, we obtain a Liouville type theorem for nonnegative solutions of the Neumann problem { div ( y a ∇ u ( x , y ) ) = 0 , x ∈ R n , y > 0 , lim y → 0 + y a u y ( x , y ) = − f ( u ( x , 0 ) ) , x ∈ R n , under general nonlinearity assumptions on the function f : R → R for any constant a ∈ ( − 1 , 1 ) .
               
Click one of the above tabs to view related content.