LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nonconstant positive radial solutions for Neumann problem involving the mean extrinsic curvature operator

Photo from archive.org

Abstract Let B be the unit ball in R N with N ≥ 2 . Let f ∈ C 1 ( [ 0 , ∞ ) , R ) ,… Click to show full abstract

Abstract Let B be the unit ball in R N with N ≥ 2 . Let f ∈ C 1 ( [ 0 , ∞ ) , R ) , f ( 0 ) = 0 , f ( β ) = β for some β ∈ ( 0 , ∞ ) , f ( s ) s for s ∈ ( 0 , β ) , f ( s ) > s for s ∈ ( β , ∞ ) and f ′ ( β ) > λ k r , where λ k r is the k-th radial eigenvalue of − Δ + I in the unit ball with Neumann boundary condition. We use the unilateral global bifurcation theorem to show the existence of nonconstant, positive radial solutions of the quasilinear Neumann problem − div ( ∇ u 1 − | ∇ u | 2 ) + u = f ( u ) in B , ∂ ν u = 0 on ∂ B .

Keywords: nonconstant positive; solutions neumann; neumann problem; positive radial; radial solutions

Journal Title: Journal of Mathematical Analysis and Applications
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.