LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Traveling wave solutions of diffusive Hindmarsh–Rose-type equations with recurrent neural feedback

Photo by thoango from unsplash

Abstract From the perspective of bifurcation theory, this study investigates the existence of traveling wave solutions for diffusive Hindmarsh–Rose-type (dHR-type) equations with recurrent neural feedback (RNF). The applied model comprises… Click to show full abstract

Abstract From the perspective of bifurcation theory, this study investigates the existence of traveling wave solutions for diffusive Hindmarsh–Rose-type (dHR-type) equations with recurrent neural feedback (RNF). The applied model comprises two additional terms: 1) a diffusion term for the conduction process of action potentials and 2) a delay term. The delay term is introduced because if a neuron excites a second neuron, the second neuron, in turn, excites or inhibits the first neuron. To probe the existence of traveling wave solutions, this study applies center manifold reduction and a normal form method, and the results demonstrate the existence of a heteroclinic orbit of a three-dimensional vector for dHR-type equations with RNF near a fold–Hopf bifurcation. Finally, numerical simulations are presented.

Keywords: hindmarsh rose; wave solutions; solutions diffusive; type equations; diffusive hindmarsh; traveling wave

Journal Title: Journal of Mathematical Analysis and Applications
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.