LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Microstructure and mechanical properties of hot forging die manufactured by bimetal-layer surfacing technology

Photo from wikipedia

Abstract The temperature field and thermal cycling characteristics of a cast-steel matrix die of automobile crankshaft were predicted. The hot forging die was divided into three temperature regions, i.e., surfacing… Click to show full abstract

Abstract The temperature field and thermal cycling characteristics of a cast-steel matrix die of automobile crankshaft were predicted. The hot forging die was divided into three temperature regions, i.e., surfacing temperature fluctuation region (0–3 mm in thickness), near surfacing temperature gradient region (3–20 mm in thickness) and matrix temperature balanced region (above 20 mm in thickness), and their temperatures were distributed in high, medium and low-tempered temperature zones respectively. The influences of temperature distribution on the microstructure and mechanical properties of the forging die before and after service were studied. The tempered martensite of strengthened layer decomposed and the coarse grain appeared after service. The protruding part of the ribbed slab was easy to propagate fatigue crack, leading to significant decreasing of tensile strength and impact properties. The tempered martensite and lower banite increased in transition layer, the mechanical properties under high temperatures decreased obviously. The strengthening of hardened structure in weld zone was reduced and the coarse grain structure disappeared, this enabled the performance of the weld zone was more stable than the cast-steel matrix layer and the transition layer.

Keywords: temperature; layer; forging die; mechanical properties; hot forging

Journal Title: Journal of Materials Processing Technology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.