LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Modelling of thermal fluid dynamics for fusion welding

Photo from wikipedia

Abstract A fluid dynamics approach to modelling of fusion welding in titanium alloys is proposed. The model considers the temporal and spatial evolution of liquid metal/gas interface to capture the… Click to show full abstract

Abstract A fluid dynamics approach to modelling of fusion welding in titanium alloys is proposed. The model considers the temporal and spatial evolution of liquid metal/gas interface to capture the transient physical effects during the heat source–material interaction of a fusion welding process. Melting and vaporisation have been considered through simulation of all interfacial phenomena such as surface tension, Marangoni force and recoil pressure. The evolution of the metallic (solid and liquid) and gaseous phases which are induced by the process enables the formation of the keyhole, keyhole dynamics, and the fully developed weld pool geometry. This enables the likelihood of fluid flow-induced porosity to be predicted. These features are all a function of process parameters and formulated as time-dependent phenomena. The proposed modelling framework can be utilised as a simulation tool to further develop understanding of defect formation such as weld-induced porosity for a particular fusion welding application. The modelling results are qualitatively compared with available experimental information.

Keywords: modelling thermal; fusion welding; fluid dynamics; thermal fluid; fusion

Journal Title: Journal of Materials Processing Technology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.