LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of Adhesive Application on Friction Self-Piercing Riveting (F-SPR) Process of AA7075-T6 Aluminum Alloy

Photo from wikipedia

Abstract The combination of adhesive and other joining processes has been an increasing interest in the transportation industry. In this paper, a hybrid joining process combining friction self-piercing riveting (F-SPR)… Click to show full abstract

Abstract The combination of adhesive and other joining processes has been an increasing interest in the transportation industry. In this paper, a hybrid joining process combining friction self-piercing riveting (F-SPR) and adhesive bonding was developed to join AA7075-T6 aluminum alloy sheets. The formation process, macro morphology, microstructure, microhardness, and mechanical performance of F-SPR bonded joints were investigated comparing with the F-SPR joints. It was concluded that the adhesive played a role of lubrication for reducing the contact stiffness between the aluminum sheets, which further reduced the interlocking amount but did not affect the solid-state welding between the aluminum sheets. After the F-SPR bonding process, the initial 0.3-mm-thick adhesive layer was squeezed to less than 0.06 mm under a maximum riveting force of about 20 kN. The subsequent baking treatment for the adhesive curing (30min@180℃) re-precipitated the η strengthening phase in the aluminum heat-affected zone, which further improved the aluminum hardness as well as the mechanical performance of the joint. The F-SPR bonded joint exhibited a combination of adhesive failure and rivet pull-out failure under quasi-static loading, which improved the tensile-shear strength by 128.7 % than the baked F-SPR joint but had no apparent effect on cross-tension performance. The F-SPR bonded joint also superposed the fatigue failure modes of the F-SPR joint and adhesive bonding joint, exhibiting the longest fatigue lives under the same cyclic load amplitude. The process provides a new method for aluminum alloy sheet joining in body-in-white production.

Keywords: friction self; process; aluminum; aluminum alloy; piercing riveting; self piercing

Journal Title: Journal of Materials Processing Technology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.