LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Expanded CUG Repeats Trigger Disease Phenotype and Expression Changes through the RNAi Machinery in C. elegans.

Photo from wikipedia

Myotonic dystrophy type 1 is an autosomal-dominant inherited disorder caused by the expansion of CTG repeats in the 3' untranslated region of the DMPK gene. The RNAs bearing these expanded… Click to show full abstract

Myotonic dystrophy type 1 is an autosomal-dominant inherited disorder caused by the expansion of CTG repeats in the 3' untranslated region of the DMPK gene. The RNAs bearing these expanded repeats have a range of toxic effects. Here we provide evidence from a Caenorhabditis elegans myotonic dystrophy type 1 model that the RNA interference (RNAi) machinery plays a key role in causing RNA toxicity and disease phenotypes. We show that the expanded repeats systematically affect a range of endogenous genes bearing short non-pathogenic repeats and that this mechanism is dependent on the small RNA pathway. Conversely, by perturbating the RNA interference machinery, we reversed the RNA toxicity effect and reduced the disease pathogenesis. Our results unveil a role for RNA repeats as templates (based on sequence homology) for moderate but constant gene silencing. Such a silencing effect affects the cell steady state over time, with diverse impacts depending on tissue, developmental stage, and the type of repeat. Importantly, such a mechanism may be common among repeats and similar in human cells with different expanded repeat diseases.

Keywords: repeats trigger; trigger disease; expanded cug; machinery; rnai machinery; cug repeats

Journal Title: Journal of molecular biology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.