The mechanical properties of titanium alloys produced by powder metallurgy (PM) are dependent on the amount of porosity within the fabricated component. The space between powder particles and the behaviour… Click to show full abstract
The mechanical properties of titanium alloys produced by powder metallurgy (PM) are dependent on the amount of porosity within the fabricated component. The space between powder particles and the behaviour of alloying elements during sintering contribute to the formation of pores. Iron (Fe) is well known to be a cost-effective alloying element for titanium alloys which acts to stabilise the β-phase. This study aims to investigate the effects of Fe addition on the sintering response of titanium alloys containing aluminium. Ti-6Al-xFe(x = 1, 3, and 5 wt %) alloy systems were manufactured by press and sinter PM from blended-elemental powders. The density, mechanical properties, microstructures and pore distribution in the sintered parts were evaluated. The compressive strength of the alloys was positively correlated to the levels of Fe. Grain boundary and solid solution strengthening accounted for the strength improvements. Furthermore, Ti-6Al-3Fe exhibited the highest strength/modulus ratio. Evaluation of the pore distributions revealed that the number of fine pores was reduced significantly as the amount of Fe was increased, though concomitantly the number of larger pores increased. It is argued that the increasing number of larger pores with higher levels of Fe is due to coalescence of fine Kirkendall porosity during the latter stages of sintering. With excessive iron additions, large pores counteract any beneficial impacts on the sintering response. It is suggested to limit the amount of Fe additions to around 3 wt% to reduce adverse effects from large pores and to maximise the strength/modulus ratio.
               
Click one of the above tabs to view related content.