In this research, a bio-based monomer 1,3-bis(methacryloyloxy)propyl-carbonyl- hexylpyridinium bromide (QANMA) that derived from niacin was synthesized and incorporated into Bisphenol A glycidyl methacrylate (Bis-GMA)/triethylene glycol dimethacrylate (TEGDMA) (50 wt/50 wt) with a… Click to show full abstract
In this research, a bio-based monomer 1,3-bis(methacryloyloxy)propyl-carbonyl- hexylpyridinium bromide (QANMA) that derived from niacin was synthesized and incorporated into Bisphenol A glycidyl methacrylate (Bis-GMA)/triethylene glycol dimethacrylate (TEGDMA) (50 wt/50 wt) with a series of mass fraction as antibacterial agent. The double bond conversion (DC), volumetric shrinkage (VS), mechanical properties, water sorption (WS) and solubility (SL) were investigated among groups with different QANMA concentrations. Antibacterial activity against S. mutans were conducted by bacteria colony counting and bacteria LIVE/DEAD staining. The results showed that QANMA had no influence on DC of dental resin (p > 0.05), but would lead to lower volumetric shrinkage (p < 0.05). Only dental resin with 10 wt% and 20 wt% of QANMA showed obviously antibacterial activity. Mechanical properties, WS and SL of dental resin could be impaired by incorporation QANMA, flexural strength and modulus were decreased with the increasing of QANMA concentration (p < 0.05), while WS and SL were increased with the increasing of QANMA concentration (p < 0.05). Dental resin with 10 wt% of QANMA seemed to be the optimal resin system in this research, for it showed significant antibacterial activity and its flexural strength was still met the requirement of ISO standard. This work suggested that bio-based monomer QANMA could be used as antibacterial agent in dental materials, but further optimization experiment and biocompatibility evaluation should be taken in future.
               
Click one of the above tabs to view related content.