LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Surface treatments and its effects on the fatigue behavior of a 5% mol yttria partially stabilized zirconia material.

Photo from wikipedia

This study evaluated the effect of distinct surface treatments on the fatigue behavior (biaxial flexural fatigue testing) and surface characteristics (topography and roughness) of a 5% mol yttria partially stabilized… Click to show full abstract

This study evaluated the effect of distinct surface treatments on the fatigue behavior (biaxial flexural fatigue testing) and surface characteristics (topography and roughness) of a 5% mol yttria partially stabilized zirconia ceramic (5Y-PSZ). Disc-shaped specimens of 5Y-PSZ (IPS e.max ZirCAD MT Multi) were manufactured (ISO 6872-2015) and allocated into six groups (n = 15) considering the following surface treatments: Ctrl - no-treatment; GLZ - low-fusing porcelain glaze application; SNF - 5 nm SiO2 nanofilm; AlOx - aluminum oxide particle air-abrasion; SiC - silica-coated aluminum oxide particles (silica-coating); and 7%Si - 7% silica-coated aluminum oxide particles (silica-coating). The biaxial flexural fatigue tests were performed by the step-stress method (20Hz for 10,000 cycles) with a step increment of 50N starting at 100N and proceeding until failure detection. The samples were tested with the treated surface facing down (tensile stress side). Topography, fractography, roughness, and phase content assessments of treated specimens were performed. GLZ group presented the highest fatigue behavior, while AlOx presented the lowest performance, and was only similar to SiC and 7%Si. Ctrl and SNF presented intermediary fatigue behavior, and were also similar to SiC and 7%Si. GLZ promoted a rougher surface, Ctrl and SNF had the lowest roughness, while the air-abrasion groups presented intermediary roughness. No m-phase content was detected (only t and c phases were detected). In conclusion, the application of a thin-layer of low-fusing porcelain glaze, the deposition of silica nanofilms and the air-abrasion with silica-coated alumina particles had no detrimental effect on the fatigue behavior of the 5Y-PSZ, while the air-abrasion with alumina particles damaged the fatigue outcomes.

Keywords: topography; surface treatments; surface; fatigue behavior; yttria partially; mol yttria

Journal Title: Journal of the mechanical behavior of biomedical materials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.