Artificial neural networks (ANN), established tools in machine learning, are applied to the problem of estimating parameters of a transversely isotropic (TI) material model using data from magnetic resonance elastography… Click to show full abstract
Artificial neural networks (ANN), established tools in machine learning, are applied to the problem of estimating parameters of a transversely isotropic (TI) material model using data from magnetic resonance elastography (MRE) and diffusion tensor imaging (DTI). We use neural networks to estimate parameters from experimental measurements of ultrasound-induced shear waves after training on analogous data from simulations of a computer model with similar loading, geometry, and boundary conditions. Strain ratios and shear-wave speeds (from MRE) and fiber direction (the direction of maximum diffusivity from diffusion tensor imaging (DTI)) are used as inputs to neural networks trained to estimate the parameters of a TI material (baseline shear modulus μ, shear anisotropy φ, and tensile anisotropy ζ). Ensembles of neural networks are applied to obtain distributions of parameter estimates. The robustness of this approach is assessed by quantifying the sensitivity of property estimates to assumptions in modeling (such as assumed loss factor) and choices in fitting (such as the size of the neural network). This study demonstrates the successful application of simulation-trained neural networks to estimate anisotropic material parameters from complementary MRE and DTI imaging data.
               
Click one of the above tabs to view related content.