LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Photopolymerizable dental composite resins with lower shrinkage stress and improved hydrolytic and hygroscopic behavior with a urethane monomer used as an additive.

Photo by manugudulkar from unsplash

This work reports the synthesis of a monomer 2-((2-(3-(prop-1-en-2-yl)phenyl)propan-2-yl)carbamoyl)oxy)ethyl methacrylate (MVTPM) and the evaluation of its performance as an additive in the formulation of Bis-GMA/TEGDMA based composite resins. Experimental composite… Click to show full abstract

This work reports the synthesis of a monomer 2-((2-(3-(prop-1-en-2-yl)phenyl)propan-2-yl)carbamoyl)oxy)ethyl methacrylate (MVTPM) and the evaluation of its performance as an additive in the formulation of Bis-GMA/TEGDMA based composite resins. Experimental composite resins formulated with the MVTPM monomer were compared with a control reference. Double bond conversion, polymerization kinetics, shrinkage and associated stress, sorption, and aqueous solubility, cell viability, as well as mechanical properties were evaluated according to international measurements standards. The experimental composite resins show comparable mechanical properties with the control reference and improvements in other properties, such as better hydrolytic and hygroscopic behavior and lower shrinkage stress, are reported. This makes MVTPM monomer potentially useful in the formulation of dental composite resins.

Keywords: shrinkage; hydrolytic hygroscopic; lower shrinkage; hygroscopic behavior; composite resins

Journal Title: Journal of the mechanical behavior of biomedical materials
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.